Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 No. 3 (2010): July–September 2010

The Binding of Acridine-4- Carboxamides within DNA Sequences: An Ab-initio and Force Field Studies

  • Bipul Bezbaruah
  • Pankaj Hazarika
  • Chitrani Medhi
Submitted
November 24, 2024
Published
2010-08-15

Abstract

The sequence specific chromophore intercalation as well as side chain binding of acridine-4-carboxamide(AC) within various sequences of DNA oligomer have been investigated by using Force Field and ab initio calculations. The intercalation of chromophore within various sequence combinations such as d(ApCpGpT)(SEQ1), d(TpCpGpG)(SEQ2) and d(GpTpCpG)(SEQ3) sequences are found different. The results provide useful information on the sequence selectivity of chromophore intercalation in DNA binding. The side chain binding within d(ApCpGpT)(SEQ1) is also evidenced, herein a distinct hydrogen bond between thymine and nitrogen atom of carboxamide side chain is found in the minimized structure of AC-SEQ1 complex. The computed interaction energies obtained from HF/6-31G calculations for the minimized structures of AC-SEQ1 and AC-SEQ2 are found positive whereas negative values are obtained for AC-SEQ3. The interaction energies for 5'3' orientation of side chain are -18.80 and -1.11 kcal/mol and the values for 3'5' orientation are -4.95 kcal/mol and -3.40 kcal/mol. Distinct hydrogen bond formed between side chain and thymine nucleobase in AC-SEQ3 for the 5'3' orientation within major groove of DNA results large negative interaction energy (-18.80 kcal/mol). So the chromophore intercalation may not be the major factor for the sequence selective binding of drug within oligomer, however the side chain selectivity might be important if thymine nucleobase is present within certain regions of DNA to form hydrogen bond.

References

  1. [1] Bailly, C.; Henichart, J. P. DNA recognition by intercalator-minor-groove binder hybrid molecules. Bioconjugate Chem. 1991, 2 (6), 379-393.
  2. [2] Crenshaw, J. M.; Graves, D. E.; Denny, W. A. Interactions of Acridine Antitumor Agents with DNA: Binding Energies and Groove Preferences. Biochemistry. 1995, 34 (41), 13682-13687.
  3. [3] Laurence, P. G.; Wakelin, A. A.; Denny, W. A. Kinetic Studies of the Binding of Acridinecarboxamide Topoisomerase Poisons to DNA:Implications for Mode of Binding of Ligands with Uncharged Chromophores. J. Med. Chem. 2002, 45, 894.
  4. [4] Bailly, C.; Denny, W. A.; Mellor, L. E.; Wakelin, L. P. G.; Waring, M. J. Sequence specificity of the binding of 9-aminoacridine- and amsacrine-4-carboxamides to DNA studied by DNase I footprinting. Biochemistry. 1992, 31 (13), 3514-3524.
  5. [5] Dasgupta, D.; Goldberg, I. H. Mode of reversible binding of neocarzinostatin chromophore to DNA: evidence for binding via the minor groove. Biochemistry. 1985, 24 (24), 6913-6920.
  6. [6] Mohammadi, S.; Perre-Fauvet, M.; Gresh, N.; Hillairet, K.; Taillandier, E. Joint Molecular Modeling and Spectroscopic Studies of DNA Complexes of a Bis(arginyl) Conjugate of a Tricationic Porphyrin Designed to Target the Major Groove. Biochemistry 1998, 37 (17), 6165-6178.
  7. [7] Adrienne, A.; J. Mitchell Guss, C.; C. A.; Denny, W. A.; Wakelin, L. P. G. Crystal Structure of the Topoisomerase II Poison 9-Amino-[N-(2-dimethylamino)ethyl]acridine-4-carboxamide Bound to the DNA Hexanucleotide d(CGTACG). Biochemistry. 1999, 38 (29), 9221-9233.
  8. [8] Bourdouxhe-Housiaux, C.; Colson, P.; Houssier, C.; Waring, M. J.; Bailly, C. Interaction of a DNA-Threading Netropsin−Amsacrine Combilexin with DNA and Chromatin. Biochemistry. 1996, 35 (14), 4251-4264.
  9. [9] Chen, Q.; Deady, L.W.; Bagley, B. C.; Denny, W. A. Electron-Deficient DNA Intercalating Agents as Antitumor Drugs: Aza Analogs of the Experimental Clinical Agent N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide. J. Med. Chem. 1994, 37 (5), 593-597.
  10. [10] Denny, W. A.; Atwell, G. J.; Rewcastle, G. W.; Baguley,B. C. Potential antitumor agents 5-Substituted derivatives of N-[2-(dimethylamino)ethyl]-9-aminoacridine-4-carboxamide with in vivo solid-tumor activity. J. Med. Chem. 1987, 30 (4), 658-663.
  11. [11] Wakelin, L. P. G.; Atwell, G. J.; Rewcastle, G. W.; Denny, W. A. Relationships between DNA-binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents. J. Med. Chem. 1987, 30 (5), 855-861.
  12. [12] Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.; Ferguson, D. M. Acridine-Based Agents with Topoisomerase II Activity Inhibit Pancreatic Cancer Cell Proliferation and Induce Apoptosis. J. Med. Chem. 2008, 51 (2), 179-182.
  13. [13] Choudhury, J. R.; Guddneppanavar, R.; Saluta, G.; Kucera, G. L.; Bierbach, U. Tuning the DNA Conformational Perturbations Induced by Cytotoxic Platinum−Acridine Bisintercalators: Effect of Metal Cis/Trans Isomerism and DNA Threading Groups. J. Med. Chem. 2008, 51 (11), 3069-3072
  14. [14] Feigon, J.; Denny, W. A.; Leupin, W.; Kearns, D. R. Interactions of antitumor drugs with natural DNA: proton NMR study of binding mode and kinetics. J. Med. Chem. 1984, 27, 450.
  15. [15] Baguley, B. C.; Denny, W. A.; Atwell, G. J.; Cain, B. F. Quantitative relationships between DNA binding and molecular structure for 9-anilinoacridines substituted in the anilino ring. J. Med. Chem. 1981, 24, 170.
  16. [16] Wright, R. D. McR.; Wakelin, L. P. G.; Fields, A.; Acheson, R. M.; Waring, M. J. Effects of ring substituents and linker chains on the bifunctional intercalation of diacridines into deoxyribonucleic acid. Biochemistry. 1980, 19(25), 5825-36.
  17. [17] Atwell, G. J.; Cain, B. F.; Baguley, B. C.; Finlay, G. J.; Denny, W. A. Synthesis and biological activity of dibasic 9- aminoacridine-4-carboxamides, a new class of antitumor agent. J. Med. Chem. 1984, 27, 1481.
  18. [18] Denny, W. A.; Baguley, B. C.; Cain, B. F.; Waring, M. J. ; Neidle, S.; Waring, M. J.; MacMillan, E. In Molecular Aspects of Anticancer Drugs Action, London. 1983, pp 1-34.
  19. [19] Denny, W. A.; Atwell, G. J.; Rewcastle, G. W.; Baguley,B. C. Potential antitumor agents. 49. 5-Substituted derivatives of N-[2-(dimethylamino)ethyl]-9 -aminoacridine-4-carboxamide with in vivo solid-tumor activity. J. Med. Chem. 1987, 30, 658-663.
  20. [20] At well, G. J.; Rewcastle, G. W.; Baguley, B. C.; Denny , W. A. In vivo solid-tumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. J. Me d. Chem. 1987, 30, 664-669.
  21. [21] Finlay, G. J.; Marshall, E. S.; Matthews, J. H. L.; Paull, K. D.; Baguley, B. C.; In vitro assessment of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide, a DNA-intercalating antitumour drug with reduced sensitivity to multidrug resistance. Cancer Chemother Pharmacol. 1993, 31, 404-406.
  22. [22] Haldane, A.; Finlay, G. J.; Holdaway, K. M.; Baguley, B.C. Cytokinetic differences in the action of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide as compare d with that of amsacrine and doxorubicin. Cancer Chemother Pharmacol. 1992, 32(6), 463-470.
  23. [23] Palmer, B. D.; Rewcastle, G. W.; Baguley, B. C.; Denny, W. A. Chromophore requirements for in vivo antitumor activity among the general class of linear tricyclic carboxamides. J. Med. Chem. 1988, 31, 707-712.
  24. [24] Wakelin, L. P. G.; Atwell, G. J.; Rewcastle, G. W.; Denny, W. A. Relationships between DNA-binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents. J. Med. Chem. 1987, 30, 855-861.
  25. [25] Rewcastle, G. W.; Denny, W. A.; Baguley, B. C. Synthesis and antitumor activity of substituted phenazine-1-carboxamides. J. Med. Chem. 1987, 30, 843-851.
  26. [26] Accelrys inc, San Diego, U.S.A.
  27. [27] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewaki, V. G.; Ortiz, J. V.; Foresmann, J. B.; Ciolowski, J.; Stefanov , B. B.; Namayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong,M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart,J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian 03; Gaussian Inc, Pittsburgh PA.

Similar Articles

You may also start an advanced similarity search for this article.