Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 3 (2011): July – September 2011

2D-QSAR Study of Fluoroquinolone Derivatives:An Approach to Design Anti-tubercular Agents

DOI
https://doi.org/10.37285/ijddd.2.3.6
Submitted
December 9, 2024
Published
2024-12-09

Abstract

QSAR studies were performed on a set of 39 analogs of fluoroquinolone using MDS vlife science QSAR plus module by using. Multiple Linear Regression (MLR), Principal Component Regression (PCR) and Partial Least Squares (PLS) Regression methods. Among these, MLR method has shown a very promising result as compared to other two methods and a QSAR model was generated by a training set of 28 molecules with correlation coefficient (r2) of 0.9412, significant cross validated correlation coefficient (q2) of 0.9213 and F test of 38.8480. In the selected descriptors, estate contribution, chi, path cluster and alignment independent descriptors were the most important descriptors in predicting anti-
tubercular inhibitory activity.

References

  1. [1] Ang, D.; Hsu, A. A. L.; Tan, B. H. Singapore Med. J. 2006, 47, 747.
  2. [2] Ball, P.; Fernald, A.; Tillotson, G. Exp. Opin. Investig. Drugs 1998, 7, 761.
  3. [3] Shandil, R. K.; Jayaram, R.; Kaur, P.; Gaonkar, S.; Suresh, B. L.; Mahesh, B. N.; Jayashree, R.; Nandi, V.; Bharath, S.; Balasubramanian, V. Antimicrob. Agents Chemother. 2007, 51, 576.
  4. [4] Maxwell, A. Trends Microbiol. 1997, 5, 102.
  5. [5] Anquetin, G.; Greiner, J.; Mahmoudi, N.; Santillana-Hayat, M.; Gozalbes, R.; Farhati, K.; Derouin, F.; Aubry, A.; Cambau, E.; Vierling, P. Eur. J. Med. Chem. 2006, 41, 1478.
  6. [6] Sato, K.; Tomioka, H.; Sano, C.; Shimizu, T.; Sano, K.; Ogasawara, K.; Cai, S.; Kamei, T. J. Antimicrob. Chemother. 2003, 52, 199
  7. [7] Sriram, D.; Yogeeswari, P.; Basha, J.S.; Radha, D.R.; Nagaraja, V. Bioorg. Med. Chem. 2005, 13, 5774-5778.
  8. [8] Sriram, D.; Aubry, A.; Yogeeswari, P.; Fisher, L.M. Bioorg. Med. Chem. Lett. 2006, 16, 2982-2985.
  9. [9] Bridges, A. J. Chem. Rev. 2001, 101, 2541.
  10. [10] Renau, T.E.; Sanchez, J.P.; Gage, J.W.; Dever, J.A.; Shapiro, M.A.; Gracheck, S.J. J. Med. Chem. 1996, 39,729-735.
  11. [11] Anquetin, G.; Greiner, J.; Mahmoudi, N.; Santillana-Hayat, M.; Gozalbes, R.; Farhati, K. Eur. J. Med. Chem. 2006, 41, 1478-1493
  12. [12] Kiely, J.S.; Hutt, M.P.; Culbertson,T.P.; Bucsh,R.A.; Worth,D.F.; Lesheski,L.E.; Gogliotti, R.D.; Sesnie, J.C.;Solomon, M.; Mich, T.F. J. Med. Chem, 1991, 34 (2), 656–663.
  13. [13] Laborde, E.; Kiely, J.S.; Culbertson, T.P.; Lesheski, L.E.J.Med. Chem, 1993, 36 (14), 1964–1970.
  14. [14] Sanchez, J.P.; Domagala, J.M.; Hagen, S.E.; Heifetz,C.L.; Hutt, M.P.; Nichols, J.B.; Trehan, A.K. J. Med. Chem, 1988, 31 (5), 983–991.